

LHAASO J2018+5157 LHAASO J2018-5157 LHAASO J2018-5157

LHAASO J2226+6057

LHAASO J1929+1745

LHAASO J1825-1326

LHAASO合作组

Large High Altitude Air Shower Observatory

Electromagnetic Detectors (EDs) Muon Detectors (MDs) Water Cherenkov Detector Array (WCDA) Wide Field of view Cherenkov Telescope Arrays (WFCTA)

Scientific Goals

γ-ray astronomy
Survey for sources (above 500 GeV)
PeVatrons (above 100 TeV)
All kind of sources: SNR, PWN, MYC, binary,
pulsar
AGN, GRB etc.
Cosmic Ray Physics
The knees
Compositions : individual species H, He and Fe
Anisotropy: (1 TeV to 10 PeV)
New Physics Front: DM, LIV, etc.

什么是宇宙线?胡红波

能量:导致空气电离 (必要条件)

进入大气的宇宙线和空气中的原子核很快 的反应,产生大量短寿命的粒子并最后都 衰变到稳定的粒子。

起源:和核衰变对应产生的高能辐射对应 来自大气层之外

物质粒子:引力波与电磁波对应

宇宙线是来自宇宙空间的高能粒子流,是 自动送上门来的宇宙深处的高能物质样品.

宇宙线中大部分是带电粒子,如:质子, α粒子、铁核等等;还有少量的中性粒子 如:γ光子、中微子等等。

宇宙线无处不在,我们人类浸泡在大量的 宇宙线粒子中,例如每秒有数以万亿的中 微子穿过我们的身体。暗物质粒子?

宇宙线的能谱和流量各向异性

Cosmic Ray Composition

From B/C flux ratio one has a grammage of ~10 g/cm². For an ISM density of 1 per cc, the distance travelled by CR is about 10000kpc, corresponding to an age of ~ 10 million years.

General picture of Galactic cosmic rays

© I. V. Moskalenko

Diffuse γ rays are expected *a priori* to be produced by CR interactions during the propagation, and are thus powerful probe of CR propagation

2

宇宙线的起源

物种起源与食物链

Origin of Cosmic Rays

Gamma-ray detectors

Impressive Gamma-ray Source Catalogs

LHAASO sensitivity

With large FOV and high sensitivity, LHAASO is an ideal detector for sky survey to search VHE and UHE sources!

Field of view for GRB/T00

1/7 of the sky at any time

Article

Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources

 $Extended \, Data Fig. 4 | LHAASO \, sky \, map \, at \, energies \, above \, 100 \, TeV. \ The circles indicate the positions of known very-high-energy \gamma-ray sources.$

Article

Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources

https://doi.org/10.1038/s41586-021-03498-z A list of authors and affiliations appears at the end of the paper.

Table 1 | UHE γ-ray sources

Source name	RA (°)	dec. (°)	Significance above 100 TeV ($\times \sigma$)	E _{max} (PeV)	Flux at 100 TeV (CU)	
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)	
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)	
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)	
LHAASO J1843-0338	280.75	-3.65	8.5	3.5 0.26 -0.10 ^{+0.16}		
LHAASO J1849-0003	282.35	-0.05	10.4	0.4 0.35 ± 0.07		
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)	
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)	
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)	
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)	
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)	
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)	
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)	

Celestial coordinates (RA, dec.); statistical significance of detection above 100 TeV (calculated using a point-like template for the Crab Nebula and LHAASO J2108+5157 and 0.3° extension templates for the other sources); the corresponding differential photon fluxes at 100 TeV; and detected highest photon energies. Errors are estimated as the boundary values of the area that contains ±34.14% of events with respect to the most probable value of the event distribution. In most cases, the distribution is a Gaussian and the error is 10.

LHAASO开启了超高能伽马射线天文学!

Great progresses are achieved in ground-based VHE gamma-ray astronomy!

Ultra-high energy超高

Ultra-High-Energy γ-ray Astronomy

arXiv:2305.17030v1

> Survey discovered 30+ new sources, 40+ PeVatrons and diffuse γ -ray emission

22

Construction of the 1st LHAASO sources

Features of WCDA and KM2A sources

WCDA detected 69 sources at >5σ (TS>37) and extension <2°</p>

KM2A detected 75 sources at >5σ (TS>37) and extension <2°</p>

Spectral index

UHE gamma-ray sources

82 sources with the Galactic latitude |b|<12°

8 sources with the Galactic latitude |b|>12°

Association with known TeV Sources

- 58 sources with TeVCat+3HAWC association
- **32** new sources (25+7)

Association with ATNF pulsars

GAMMA RAYS

Origin of cosmic ray electrons and positrons

2023/9/1 LHAASO合作 Zhao-Dong Shi^{1,2★} and Siming Liu^{1,2★}

LHAASO合作组会议, 2023, 成都

>7 SNRs Detected by LHAASO

The higher energy spectra are softer (but harder than an exponential cutoff)

YMSC IN OUR GALAXY

- ~20 in our Galaxy
- More to be discovered (high extinction in Galactic plane)

Stellar	$\log[\dot{M}]$	V_{∞}		
type	${ m M}_{\odot}~{ m yr}^{-1}$	[km s ⁻¹]		
WNL	-4.2	1650		
WNE	-4.5	1900		
WC6-9	-4.4	1800		
WC4-5	-4.7	2800		
WO	-5.0	3500		
03	-5.2	3190		
O4	-5.4	2950		
O4.5	-5.5	2900		
05	-5.6	2875		

• The wind power of a single young star can be as high as 1e37 erg/s

弥散伽马射线

LHAASO collaboration arXiv: 2305.05372

LHAASO diffuse

arXiv: 2305.05372

Gamma-ray flux in inner and outer Galaxy

IceCube data from IceCube 7 years limit on Kra-gamma model approximated to |b|<5

Gamma-ray flux in LHAASO is same 1/E^3, but combination with Fermi looks different.

Energy coverage from sub-TeV to 10 TeV by WCDA

WCDA is expected to cover the energy range from sub-TeV to 10 TeV, and will perfectly bridge Fermi and KM2A.

- 宇宙线起源问题是粒子天体物理的核心科学问题之一,也是LHAASO的主要科学目标之一
- 过去几十年从射电到甚高能伽马射线的天文多波段研究表明GeV宇宙线主要来 自于高密度环境中的超新星遗迹激波加速而TeV宇宙线主要来自于低密度环境 中的高速激波粒子加速

■ LHAASO观测有望澄清PeV宇宙线的起源问题

Summary

- Construction of LHAASO finished in September 2021. LHAASO operates with almost 100% duty cicle. It's one year sensitivity is better compared to 50 hours for present Cherenkov telescopes above few TeV. Above 20 TeV it is better compared to future CTA.
- LHAASO presented first catalog of 90 sources from about 2 first years of observation. 32 are new sources. Number of UHE gamma-ray sources above 100 TeV increased from 4 to 43 by LHAASO observations
 - □ 35 sources are PWN. Crab, Geminga, milisecond pulsar
 - □ 7 SNR, gamma-Cygni can not be explained by leptons
 - □ Star clusters Cygnus, w43
- Diffuse emission from Galaxy: new models requered
- GRB 221009A: detailed properties of GRB afterglow from 60000 photons in LHAASO WCDA

1054年的客星

一定祥 定業下暑者不當實而賞當罰而不罰也鄰保吉有過於法不當為 不用載調張廠快荒其為史於復可耀也通来呼媽山谷驚裂有養 來明如是之著那臣愚伏望陛下違天之戒應天以實敢天下以難 要哪如是之著那臣愚伏望陛下違天之戒應天以實敢天下必 樂明如是之著那臣愚伏望陛下違天之戒應天以實敢天下必 樂明完廟社稷之病,謂賢人君子者隱之使居廟堂之上。貢以三公四 與天下曉望之所謂賢人君子者隱之使居廟堂之上。貢以三公四 與天下曉望之所謂賢人君子者隱之使居廟堂之上。貢以三公四 與天下曉望之所謂賢人君子者隱之使居廟堂之上。貢以三公四 與天下曉望之所謂賢人君子者隱之使居廟堂之上。貢以三公四 與天下曉望之所謂賢人君子者隱之使居廟堂之上。貢以三公四 與天下曉望之所謂賢人君子者隱之使居廟堂之上。貢以三公四 與天下曉望之所謂賢人君子者隱之使居廟堂之上。貢以三公四 與天下曉望之所謂賢人君子者隱之心。臣朝夕思處戴帷禪賢命 之言為非命乞朝之有罵我也罵一一 之言為非命乞爾之者,不是親一者一 一 之言為非命乞,而不爾,之若然明陰陽,而不能,此送,一 一 之言為非命乞,一 , 之言為,非命乞, 一 , 之言為,非命乞, 一 , 之言為, 一 , 一 , 一 , 一 , 一 , 一 , 一 , 一 , 一 , 一

Cite as: The LHAASO Collaboration, *Science* 10.1126/science.abg5137 (2021).

PeV gamma-ray emission from the Crab Nebula

The LHAASO Collaboration*†

*Corresponding authors: Zhen Cao (caozh@ihep.ac.cn); S. Z. Chen (chensz@ihep.ac.cn); S. J. Lin (linsj6@mail.sysu.edu.cn); S. S. Zhang (zhangss@ihep.ac.cn); M. Zha (zham@ihep.ac.cn); Cong Li (licong@ihep.ac.cn); L. Y. Wang (wangly@ihep.ac.cn); L. Q. Yin (yinlq@ihep.ac.cn); F. Aharonian (felix.aharonian@mpi-hd.mpg.de); R. Y. Liu (ryliu@nju.edu.cn)

†The LHAASO Collaboration authors and affiliations are listed in the supplementary materials.

1st LHAASO source catalog

Source name	Components	α_{2000}	δ_{2000}	$\sigma_{p,95,stat}$	r_{39}	TS	N_0	Г	TS_{100}	Asso. $(Sep.[^{\circ}])$
1LHAASO J0007+5659u	KM2A	1.86	57.00	0.12	< 0.18	86.5	$0.33 {\pm} 0.05$	$3.10 {\pm} 0.20$	43.6	
	WCDA						< 0.27			
1LHAASO J0007+7303u	KM2A	1.91	73.07	0.07	$0.17{\pm}0.03$	361.0	$3.41{\pm}0.27$	$3.40 {\pm} 0.12$	171.6	CTA 1 (0.12)
	WCDA	1.48	73.15	0.10	< 0.22	141.6	$5.01 {\pm} 1.11$	$2.74{\pm}0.11$		
1LHAASO J0056 $+6346u$	KM2A	14.10	63.77	0.08	$0.24{\pm}0.03$	380.2	$1.47 {\pm} 0.10$	$3.33{\pm}0.10$	94.1	
	WCDA	13.78	63.96	0.15	$0.33{\pm}0.07$	106.1	$1.45 {\pm} 0.41$	$2.35{\pm}0.13$		
1LHAASO J0206 $+4302u$	KM2A	31.70	43.05	0.13	< 0.27	96.0	$0.24{\pm}0.03$	$2.62{\pm}0.16$	82.8	
	WCDA						< 0.09			
1LHAASO J0212 $+4254u$	KM2A	33.01	42.91	0.20	< 0.31	38.4	$0.12{\pm}0.03$	$2.45{\pm}0.23$	30.2	
	WCDA						< 0.07			
1LHAASO J0216 $+4237$ u	KM2A	34.10	42.63	0.10	< 0.13	102.0	$0.18{\pm}0.03$	$2.58{\pm}0.17$	65.6	
	WCDA						< 0.20			
1LHAASO J0249+6022	KM2A	42.39	60.37	0.16	$0.38{\pm}0.08$	148.8	$0.93{\pm}0.09$	$3.82{\pm}0.18$		
	WCDA	41.52	60.49	0.40	$0.71{\pm}0.10$	53.3	$1.96{\pm}0.51$	$2.52{\pm}0.16$		
1LHAASO J0339+5307	KM2A	54.79	53.13	0.11	< 0.22	144.0	$0.58{\pm}0.06$	$3.64{\pm}0.16$		LHAASO J0341+5258 (0.37)
	WCDA						< 0.21			
1LHAASO J0343+5254u*	KM2A	55.79	52.91	0.08	$0.20{\pm}0.02$	388.1	$1.07 {\pm} 0.07$	$3.53{\pm}0.10$	20.2	LHAASO J0341 $+5258$ (0.28)
	WCDA	55.34	53.05	0.18	$0.33{\pm}0.05$	94.1	$0.29{\pm}0.13$	$1.70 {\pm} 0.19$		

PeVatrons

- **51%** (35/69) 1-25TeV sources are UHE sources.
- 57% (43/75) >25TeV sources are UHE sources.
- 19% (8/43) UHE sources are not detected at 1-25TeV (new class?).

LHAASO catalog

Discovery Highlights

GRB 221009A: brightest-of-all-time (BOAT) GRB

- Triggered on a weak precursor
- Fluence: >5e-2 erg/cm^2, low redshift (z=0.151)
- deriving an enormous energy E_{y,iso}~10⁵⁵ erg

z=0.151 volume ~ 1 Gpc^3

GECAM/Konus-Wind Observations of GRB 221009A

LHAASO GRB221009A

- LHAASO detection of GRB 221009A: first GRB seen by a extensive air shower detector
- High statistics: >60,000 photons above 0.2TeV (LHAASO-WCDA)
- TeV count rate light curve: Smooth temporal profile – external shock origin

First time detection of the TeV afterglow onset !

MeV vs TeV light curves: external shock origin

SED measured by LHAASO-WCDA

Fast decay phase

$$\alpha_3 = -2.21^{+0.30}_{-0.83}$$

$$T_{\rm b,2} = T^* + 670^{+230}_{-110} \,\mathrm{s}$$

Revealing a jet break at the earliest time.

A narrow GRB jet

- Jet breaks have been seen in optical/X-ray bands
- First time seeing a jet break at TeV band
- Helps to understand the total energy of the GRB

assuming jet angles derived from the break time of the optical afterglow light curve, the collimation-corrected radiated energy is clustered around ~10⁵¹ erg.
Bloom et al. ApJ 2001

$$\theta_0 \sim 0.6^{\circ} E_{k,55}^{-1/8} n_0^{1/8} \left(\frac{t_{\rm b,2}}{670\,\rm s}\right)^{3/8}$$

$$E_{\gamma,j} = E_{\gamma,iso}\theta_0^2/2 \sim 7.5 \times 10^{50} \text{ erg} E_{\gamma,iso,55}(\theta_0/0.7^\circ)^2$$

Pulsars as Counterparts of VHE gamma-ray sources

Pulsars – the most commonly potential counterparts of detected VHE gamma-ray emitter

Among the 47 sources not yet identified, most of them (**36**) have possible associations with cataloged objects, notably PWNe and energetic pulsars that could power VHE PWN. — HGPS

14 firmly identified PWN by HESS

HGPS name	ATNF name	Canonical name	lg Ė	$\frac{\tau_{c}}{(kyr)}$	d (kpc)	PSR offset (pc)	Γ	R _{PWN} (pc)	$L_{1-10 \text{ TeV}} (10^{33} \text{ erg s}^{-1})$
J1813-1781	J1813-1749		37.75	5.60	4.70	<2	2.07 ± 0.05	4.0 ± 0.3	19.0 ± 1.5
J1833-105	J1833-1034	G21.5-0.9 ²	37.53	4.85	4.10	<2	2.42 ± 0.19	<4	2.6 ± 0.5
J1514-591	B1509-58	MSH 15-523	37.23	1.56	4.40	<4	2.26 ± 0.03	11.1 ± 2.0	52.1 ± 1.8
J1930+188	J1930+1852	G54.1+0.34	37.08	2.89	7.00	<10	2.6 ± 0.3	<9	5.5 ± 1.8
J1420-607	J1420-6048	Kookaburra (K2)5	37.00	13.0	5.61	5.1 ± 1.2	2.20 ± 0.05	7.9 ± 0.6	44 ± 3
J1849-000	J1849-0001	IGR J18490-00006	36.99	42.9	7.00	<10	1.97 ± 0.09	11.0 ± 1.9	12 ± 2
J1846-029	J1846-0258	Kes 75 ²	36.91	0.728	5.80	<2	2.41 ± 0.09	<3	6.0 ± 0.7
J0835-455	B0833-45	Vela X ⁷	36.84	11.3	0.280	2.37 ± 0.18	1.89 ± 0.03	2.9 ± 0.3	$0.83 \pm 0.11^{*}$
J1837-0698	J1838-0655		36.74	22.7	6.60	17 ± 3	2.54 ± 0.04	41 ± 4	204 ± 8
J1418-609	J1418-6058	Kookaburra (Rabbit)5	36.69	10.3	5.00	7.3 ± 1.5	2.26 ± 0.05	9.4 ± 0.9	31 ± 3
J1356-6459	J1357-6429		36.49	7.31	2.50	5.5 ± 1.4	2.20 ± 0.08	10.1 ± 0.9	14.7 ± 1.4
J1825-13710	B1823-13		36.45	21.4	3.93	33 ± 6	2.38 ± 0.03	32 ± 2	116 ± 4
J1119-614	J1119-6127	G292.2-0.5 ¹¹	36.36	1.61	8.40	<11	2.64 ± 0.12	14 ± 2	23 ± 4
J1303-63112	J1301-6305		36.23	11.0	6.65	20.5 ± 1.8	2.33 ± 0.02	20.6 ± 1.7	96 ± 5

We have presented the third catalog of steady gammaray emitters detected by HAWC using 1523 days of data. The catalog consists of 65 sources, including two blazars. The most abundant source class among the potential counterpart of HAWC sources in the Galactic plane is pulsars (56). — 3HWC (HAWC Collaboration 2020, ApJ)

From PWN to Pulsar Halos

Three Evolution Stages

LHAASO J0621+3755

1LHAASO Catalogue

35 sources associated with pulsars with $\dot{E} > 10^{34}$ erg/s at a chance probablity <1% (65 have ≥1 pulsar within 0.5 deg)

Source name	PSR name	${\rm dist.}(^\circ)$	Distance (kpc)	τ_c (kyr)	$\dot{E}~({\rm ergs/s})$	P_c	Identified type in TeVCat
1LHAASO J0007+7303u	PSR J0007+7303	0.05	1.40	14	4.5e + 35	7.3e-05	PWN
1LHAASO J0216+4237u	PSR J0218+4232	0.33	3.15	476000	2.4e + 35	3.6e-03	
1LHAASO J0249+6022	PSR J0248+6021	0.16	2.00	62	2.1e + 35	1.5e-03	
1LHAASO J0359+5406	PSR J0359 + 5414	0.15	-	75	1.3e + 36	7.2e-04	
1LHAASO J0534+2200u	PSR J0534 + 2200	0.01	2.00	1	4.5e + 38	3.2e-06	PWN
1LHAASO J0542+2311u	PSR J0543+2329	0.30	1.56	253	4.1e + 34	8.3e-03	
1LHAASO J0622+3754	PSR J0622+3749	0.09	-	208	2.7e + 34	2.5e-04	PWN/TeV Halo
1LHAASO J0631+1040	PSR J0631 + 1037	0.11	2.10	44	1.7e + 35	3.5e-04	PWN
1LHAASO J0634+1741u	PSR J0633+1746	0.12	0.19	342	3.3e + 34	1.3e-03	PWN/TeV Haloa
1LHAASO J0635+0619	PSR J0633 + 0632	0.39	1.35	59	1.2e + 35	9.4e-03	
1LHAASO J1740 $+0948u$	PSR J1740+1000	0.21	1.23	114	2.3e + 35	1.4e-03	
1LHAASO J1809-1918u	PSR J1809-1917	0.05	3.27	51	1.8e + 36	6.2e-04	
1LHAASO J1813-1245	PSR J1813-1245	0.01	2.63	43	6.2e + 36	6.3e-06	
1LHAASO J1825-1256u	PSR J1826-1256	0.09	1.55	14	3.6e + 36	1.6e-03	
1LHAASO J1825-1337u	PSR J1826-1334	0.11	3.61	21	2.8e + 36	2.8e-03	PWN/TeV Halo
1LHAASO J1837-0654u	PSR J1838-0655	0.12	6.60	23	5.6e + 36	2.2e-03	PWN
1LHAASO J1839-0548u	PSR J1838-0537	0.20	-	5	6.0e + 36	6.1e-03	
1LHAASO J1848-0001u	PSR J1849-0001	0.06	-	43	9.8e + 36	1.2e-04	PWN
1LHAASO J1857+0245	PSR J1856+0245	0.16	6.32	21	4.6e + 36	3.1e-03	PWN
1LHAASO J1906+0712	PSR J1906+0722	0.19	-	49	1.0e + 36	5.9e-03	
1LHAASO J1908+0615u	PSR J1907+0602	0.23	2.37	20	2.8e + 36	6.8e-03	
1LHAASO J1912+1014u	PSR J1913 + 1011	0.13	4.61	169	2.9e + 36	1.5e-03	
1LHAASO J1914+1150u	PSR J1915+1150	0.09	14.01	116	5.4e + 35	1.8e-03	
1LHAASO J1928+1746u	PSR J1928+1746	0.04	4.34	83	1.6e + 36	1.6e-04	
1LHAASO J1929+1846u	PSR J1930 + 1852	0.29	7.00	3	1.2e + 37	2.6e-03	PWN
1LHAASO J1954+2836u	PSR J1954 + 2836	0.01	1.96	69	1.1e + 36	1.6e-05	PWN
1LHAASO J1954+3253	PSR J1952+3252	0.33	3.00	107	3.7e + 36	6.7e-03	
1LHAASO J1959+2846u	PSR J1958 + 2845	0.10	1.95	22	3.4e + 35	2.8e-03	PWN
1LHAASO J2005+3415	PSR J2004+3429	0.25	10.78	18	5.8e + 35	9.9e-03	
1LHAASO J2005+3050	PSR J2006+3102	0.20	6.04	104	2.2e + 35	9.2e-03	
1LHAASO J2020+3649u	PSR J2021+3651	0.05	1.80	17	3.4e + 36	1.5e-04	PWN
1LHAASO J2028+3352	PSR J2028+3332	0.36	-	576	3.5e + 34	8.0e-03	
1LHAASO J2031+4127u	PSR J2032+4127	0.08	1.33	201	1.5e + 35	1.0e-03	PWN
1LHAASO J2228+6100u	PSR J2229+6114	0.27	3.00	10	2.2e + 37	2.2e-03	PWN
1LHAASO J2238+5900	PSR J2238+5903	0.07	2.83	27	8.9e + 35	3.0e-04	

$$P_c = 1 - e^{r^2/r_0^2}$$
 $r_0 = [\pi \rho(\dot{E})]^{-1/2}$

$$|b - b_c| < 2.5^{\circ} \& |l - l_c| < 10^{\circ}$$

Crab: PWN as a Super-PeVatron of protons?

Highlight Talks in PWN/Pulsar Halos by LHAASO

Gamma-ray emitting YMSC

-47°00'

16^h55^m

16^h50^m

0.1

16^h45^m 16^h40^m Right Ascension (J2000) New GAMMA-RAY Source population:

Cygnus Cocoon(GeV-TeV)[Fermi 2012, HAWC2022] Westerlund 1 (TeV) [HESS collaboration

LHAASO VIEW ON CYGNUS

Curved and uniform spectral shape inner bubble: r~3 degrees, similar to "cocoon" cygnus bubble: r~10 degrees

Huge bubble beyond ~10 degrees (200 pc) cygnus bubble: r~10 degrees

•UHE gamma-ray emission reveal good correlation with dense gas •Spectrum up to PeV